Kinetics of Spontaneous and EF-G-Accelerated Rotation of Ribosomal Subunits.
نویسندگان
چکیده
Ribosome dynamics play an important role in translation. The rotation of the ribosomal subunits relative to one another is essential for tRNA-mRNA translocation. An important unresolved question is whether subunit rotation limits the rate of translocation. Here, we monitor subunit rotation relative to peptide bond formation and translocation using ensemble kinetics and single-molecule FRET. We observe that spontaneous forward subunit rotation occurs at a rate of 40 s(-1), independent of the rate of preceding peptide bond formation. Elongation factor G (EF-G) accelerates forward subunit rotation to 200 s(-1). tRNA-mRNA movement is much slower (10-40 s(-1)), suggesting that forward subunit rotation does not limit the rate of translocation. The transition back to the non-rotated state of the ribosome kinetically coincides with tRNA-mRNA movement. Thus, large-scale movements of the ribosome are intrinsically rapid and gated by its ligands such as EF-G and tRNA.
منابع مشابه
Structural insights into ribosome translocation
During protein synthesis, tRNA and mRNA are translocated from the A to P to E sites of the ribosome thus enabling the ribosome to translate one codon of mRNA after the other. Ribosome translocation along mRNA is induced by the universally conserved ribosome GTPase, elongation factor G (EF-G) in bacteria and elongation factor 2 (EF-2) in eukaryotes. Recent structural and single-molecule studies ...
متن کاملGTP hydrolysis by EF-G synchronizes tRNA movement on small and large ribosomal subunits.
Elongation factor G (EF-G) promotes the movement of two tRNAs and the mRNA through the ribosome in each cycle of peptide elongation. During translocation, the tRNAs transiently occupy intermediate positions on both small (30S) and large (50S) ribosomal subunits. How EF-G and GTP hydrolysis control these movements is still unclear. We used fluorescence labels that specifically monitor movements ...
متن کاملStructural insights into initial and intermediate steps of the ribosome-recycling process.
The ribosome-recycling factor (RRF) and elongation factor-G (EF-G) disassemble the 70S post-termination complex (PoTC) into mRNA, tRNA, and two ribosomal subunits. We have determined cryo-electron microscopic structures of the PoTC·RRF complex, with and without EF-G. We find that domain II of RRF initially interacts with universally conserved residues of the 23S rRNA helices 43 and 95, and prot...
متن کاملActivation of GTP hydrolysis in mRNA-tRNA translocation by elongation factor G
During protein synthesis, elongation of the polypeptide chain by each amino acid is followed by a translocation step in which mRNA and transfer RNA (tRNA) are advanced by one codon. This crucial step is catalyzed by elongation factor G (EF-G), a guanosine triphosphatase (GTPase), and accompanied by a rotation between the two ribosomal subunits. A mutant of EF-G, H91A, renders the factor impaire...
متن کاملDynamic contact network between ribosomal subunits enables rapid large-scale rotation during spontaneous translocation
During ribosomal translation, the two ribosomal subunits remain associated through intersubunit bridges, despite rapid large-scale intersubunit rotation. The absence of large barriers hindering rotation is a prerequisite for rapid rotation. Here, we investigate how such a flat free-energy landscape is achieved, in particular considering the large shifts the bridges undergo at the periphery. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell reports
دوره 16 8 شماره
صفحات -
تاریخ انتشار 2016